Applied CFD | OpenFOAM Training | Course Modules (2.5 days)
Fluid Dynamics/Physical Modelling
- Transport phenomena: background, material properties, models for momentum and thermophysical transport
- Multiphase flows: VOF method and equations, initialisation and boundary conditions, multiphase transport
- Rotating frames of reference: Multiple reference frames (MRF), setting MRF regions and controls
- Dynamic meshes: applying dynamic meshes, mesh motion solvers, rigid body motion
- Non-Conformal Coupling (NCC): meshes for rotating geometries, transient simulation with sliding interface
- Compressible/thermal flows: high speed flow, solving for energy, thermal boundary conditions
- Thermophysical modelling: selecting models, equation of state, thermodynamics, transport, mixtures
- Porous media: meshing for porous media, configuration of fvModels and fvConstraints
- Particles: Lagrangian functionality, injection, patch interaction, sub-models, visualization
- Scalar Transport: plug-in scalar transport, field initialisation, flow tracer, time accuracy
Geometry and Meshing
- Meshing tools: anisotropic refinement, extruding a 2D mesh, patch manipulation, meshing workflow
- snappyHexMesh feature capturing: extracting features, explicit feature capturing, adjusting features
- snappyHexMesh meshing baffles: baffle geometry, face zones, creating baffles
- Multi-region meshing: geometry for multi-regions, specifying regions, capturing region boundaries
- Conjugate heat transfer: multi-domain meshing, CHT case initialisation, heat sources, data processing
Numerical Solution and Data Analysis
- Transient simulation: Courant number, time discretization, stability and accuracy, under-relaxation
- Boundedness and MULES: need for boundedness, principle of MULES, fast solution with implicit MULES
- Animations: ParaView animation, creating videos, animating a VTK sequence, linking frames to properties
Who Should Attend
Target Audience
- Previous attendees of Essential CFD
- OpenFOAM users with experience in modern CFD
- Users looking to extend CFD competency across a broader range of applications
- Users wishing to extend their knowledge of tools in OpenFOAM.
Pre-requisites
- A science/engineering/mathematics background is beneficial
- Familiarity with Linux is an advantage
- Participation in Essential CFD is recommended (skills are carried over into this course)
Further Details
Competence in CFD with OpenFOAM
- This course has been designed over 6 months, drawing on 2000 hours OpenFOAM training experience.
- It enables competency: the confidence to repeatedly carry out CFD analysis to a defined standard.
- Confidence = not freezing at the keyboard.
- Repeatedly = delivering a good solution, and another…
- Defined standard = understand what a good solution is and delivering solutions in a timely manner.
- It addresses the challenges of CFD analysis through a modular curriculum.
Accelerated Learning
- We have accelerated the learning process by making OpenFOAM easier to use with…
- Template cases, that provide a convenient way to set up and start a new simulation.
- Packaged tools, particularly for post-processing, that can be plugged into a case as required.
- Separating required user input data from application configuration controls, e.g. for snappyHexMesh.
- Useful scripts, e.g. for live plotting of time-value data such as residuals, creating videos and sequencing VTK images for animation.
- Code feature changes to reduce the number of steps required for a given task.
- CFD Direct is able to do this because it includes the architect/co-founders of OpenFOAM.
Learning CFD through Experience
- The training involves learning through experience.
- We use representative cases spanning a range of scientific disciplines and industries.
- E.g. car, propeller, exhaust, static mixer, cyclone, electronic components, weir.
- CFD solutions are built in small, digestible steps with periods of reflection to reinforce new concepts.
- This reflects real CFD practice, where trouble-free, complex simulations cannot usually be set up in “one go”.